Geographic variation in vulnerability to climate warming in a tropical Caribbean lizard
نویسندگان
چکیده
1. Rising global temperatures are predicted to impact organisms in diverse ways. For ectotherms, recent broad-scale analyses have predicted global patterns of vulnerability to warming, with tropical species at higher risk of detrimental effects than temperate species. However, vulnerability results from complex interactions between environment, physiology and behaviour. For species that inhabit a diversity of habitat types, these interactions may change across their range. 2. We measured operative thermal environments (Te) and body temperatures (Tb) of the tropical Caribbean lizard Anolis cristatellus at nine sites representing two habitat types: mesic and xeric forest. The thermal sensitivity of whole-organism physiological performance (i.e. sprint speed) of one mesic and one xeric population was also measured. Thermal and performance data were integrated to determine how habitat thermal variation, behavioural thermoregulation and thermal physiology influence current physiological performance capacity in the field. We then evaluate if habitat suitability and physiological capacity would change assuming climate warming of 3 !C over the next century. 3. The mean Te of the xeric habitat was 4Æ5 !C warmer than that of the mesic habitat. However, behavioural thermoregulation by xeric lizards led to lesser differences in Tb (3Æ5 !C) between habitat types. The thermal sensitivity of sprint performance was similar for mesic and xeric lizards, and lizards from both habitats maintain sprint capacities near 100%. Climate warming is predicted to influence mesic and xeric lizards differently. Xeric lizards currently live in a thermal environment near their upper temperature threshold, while mesic lizards do not. As a result, the number of suitable perch sites is predicted to decrease dramatically in the xeric but not the mesic habitat. In addition, the physiological capacity of mesic lizards is predicted to increase by approximately 4%, whereas a decrease of approximately 30% is predicted for xeric lizards. 4. We characterized variation in the current biophysical and ecophysiological conditions experienced by A. cristatellus by integrating fine-scale measurements of thermal microhabitats with data on body temperatures and physiological performance capacities. These data allowed us to explicitly demonstrate how variation in these parameters can influence population susceptibility to climate warming across a species range and highlight the utility of a mechanistic approach in studies of global climate change.
منابع مشابه
The impact of climate change measured at relevant spatial scales: new hope for tropical lizards.
Much attention has been given to recent predictions that widespread extinctions of tropical ectotherms, and tropical forest lizards in particular, will result from anthropogenic climate change. Most of these predictions, however, are based on environmental temperature data measured at a maximum resolution of 1 km(2), whereas individuals of most species experience thermal variation on a much fin...
متن کاملLinking traits to energetics and population dynamics to predict lizard ranges in changing environments.
I present a dynamic bioenergetic model that couples individual energetics and population dynamics to predict current lizard ranges and those following climate warming. The model predictions are uniquely based on first principles of morphology, life history, and thermal physiology. I apply the model to five populations of a widespread North American lizard, Sceloporus undulatus, to examine how g...
متن کاملPredictable Variation of Range-Sizes across an Extreme Environmental Gradient in a Lizard Adaptive Radiation: Evolutionary and Ecological Inferences
Large-scale patterns of current species geographic range-size variation reflect historical dynamics of dispersal and provide insights into future consequences under changing environments. Evidence suggests that climate warming exerts major damage on high latitude and elevation organisms, where changes are more severe and available space to disperse tracking historical niches is more limited. Sp...
متن کاملThermal tolerance and climate warming sensitivity in tropical snails
Tropical ectotherms are predicted to be especially vulnerable to climate change because their thermal tolerance limits generally lie close to current maximum air temperatures. This prediction derives primarily from studies on insects and lizards and remains untested for other taxa with contrasting ecologies. We studied the HCT (heat coma temperatures) and ULT (upper lethal temperatures) of 40 s...
متن کاملPredicting the impacts of climate change on genetic diversity in an endangered lizard species
Many endangered species persist as a series of isolated populations, with some populations more genetically diverse than others. If climate change disproportionately threatens the most diverse populations, the species’ ability to adapt (and hence its longterm viability) may be affected more severely than would be apparent by its numerical reduction. In the present study, we combine genetic data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012